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Ratios, Proportions, Unit Conversions, and the Factor-Label Method 

Math 101, Littlefield1 

I don’t know why, but presentations about ratios and proportions are often confused and fragmented.  The 
one in your textbook is no exception.  This handout is an attempt to do better. 

First, some definitions.  These aren’t universal, but they’ll be handy for our purposes.   

Numbers are things like 6, 0.0039, and 4/11 = 0.3636...  Numbers are used to measure and count things. You 
can do arithmetic with numbers to get more numbers, but they don’t actually mean anything until they’re 
placed in some context and associated with some “unit”. 

Units are things like “feet”, “inches”, “gallons”, “apples”, or “days”.  They tell you what it is that you’re 
measuring or counting. 

A quantity is what you get when you combine a number and a unit.  Examples include “4 feet”, 
“0.0039 inches”, “2.5 apples”, or “365 days”.  Quantities are the things we usually care about. 

A ratio is a comparison between two or more quantities associated with multiplying or dividing (as opposed 
to adding or subtracting).  In English, ratios are often indicated by words like “per” and “for every”.  
Examples include “3.3 workers for every Social Security recipient”, “8 slices of pizza for every 3 people”, 
“10 milligrams of drug per 5 cc vial”, and “50 miles per hour”.  Notice that what we usually think of as a rate 
(50 miles per hour) is also a special kind of ratio. 

Ratios are only used for relationships where it’s reasonable to think that the numbers can be scaled by 
multiplying or dividing.  “3.3 workers for every Social Security recipient”2 doesn’t really mean that 
somebody cut a worker to pieces — it means that there were 48 million recipients and 158 million workers: 
158/48 = 3.3.  “50 miles per hour” might mean exactly 50 miles in exactly one hour, but it might also mean 
25 miles in half an hour or 200 miles in four hours. 

Ratios can be written in a variety of ways, but for most purposes it’s easiest to write them as fractions: 

ݏݎ݁݇ݎ݋ݓ 3.3

ݐ݊݁݅݌݅ܿ݁ݎ
           

ݏ݈݁ܿ݅ݏ 8

݈݁݌݋݁݌ 3
          

10 ݉݃

5 ܿܿ
          

ݏ݈݁݅݉ 50

ݎݑ݋݄
 

A proportion is a statement that two ratios are equal.  In other words, a proportion specifies that not only is 
it reasonable to think that the numbers in the ratios can be scaled, but that this is actually true for the 
situation at hand. 

ݏݎ݁݇ݎ݋ݓ 3.3

ݐ݊݁݅݌݅ܿ݁ݎ
 ൌ

158 ൈ 10଺ ݏݎ݁݇ݎ݋ݓ

48 ൈ 10଺ ݏݐ݊݁݅݌݅ܿ݁ݎ
                  

ݏ݈݁ܿ݅ݏ 8

݈݁݌݋݁݌ 3
ൌ
ݏ݈݁ܿ݅ݏ 40

݈݁݌݋݁݌ 15
                 

10 ݉݃

5 ܿܿ
ൌ
7 ݉݃

3.5 ܿܿ
 

Ratios and proportions are valuable because they accurately reflect a huge number of real-life situations.  If 
you know that 3 people eat 8 slices of pizza, and you’re planning a party for 15 people, you can use a 
proportion to figure out how much pizza you need.  If you know that a drug comes packaged as 10 mg of 

                                                      
1 Copyright 2009, Rik Littlefield, all rights reserved.  Contact rj.littlefield@computer.org for permission to copy. 
2 Social Security numbers for 2005, inferred from http://www.njfac.org/FactsSS.pdf 
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active ingredient diluted in 5 cc of solution, and you really need a 7 mg dose, you can use a proportion to 
figure out how many cc to dispense. 

Most algebra books treat proportions as something almost trivial: 
௔

௕
ൌ

௖

ௗ
 .  That equation is easily solved for 

any of the variables, and you’re done.  What could possibly be simpler? 

What the books overlook is that the difficulty lies in writing a correct proportion to start with.   

If you’re working the pizza problem and the drug problem, which of these proportions is correct? 

 
8 

3 
ൌ

ݔ

15
       ݎ݋        

8

3
ൌ  
15

ݔ
   ?                                   

10

5
ൌ
ݕ

7
      ݎ݋       

10

5
ൌ
7

ݕ
    ? 

There’s certainly no algebraic difficulty solving for x and y in any of these proportions.  x, the number of 
slices of pizza, comes out to be either 40 or about 5.6.  And y, the amount of drug to dispense, comes out to 
be either 14 or 3.5. 

Clearly one member of each pair must be wrong, but which one??  It is very hard to tell, when the ratios are 
written with just numbers. 

But suppose we include the units when we write the ratios: 

ݏ݈݁ܿ݅ݏ 8

݈݁݌݋݁݌ 3
ൌ

ݏ݈݁ܿ݅ݏ ݔ

݈݁݌݋݁݌ 15
     ݎ݋      

ݏ݈݁ܿ݅ݏ 8

݈݁݌݋݁݌ 3
ൌ
݈݁݌݋݁݌ 15

ݏ݈݁ܿ݅ݏ ݔ
     ? 

10 ݉݃

5 ܿܿ
ൌ
ܿܿ  ݕ

7 ݉݃
     ݎ݋     

10 ݉݃

5 ܿܿ
ൌ
7 ݉݃

ܿܿ  ݕ
     ? 

Well, now it’s blindingly obvious — the correct equations are the ones where the units line up:  

        
௦௟௜௖௘௦

௣௘௢௣௟௘
   on both sides of the first, and     

௠௚

௖௖
   on both sides of the second.   

If the units do not line up, then the equations just don’t make sense. 

       
௦௟௜௖௘௦

௣௘௢௣௟௘
ൌ

௣௘௢௣௟௘

௦௟௜௖௘௦
     or     

௠௚

௖௖
ൌ

௖௖

௠௚
 ?       I don’t think so! 

What we’ve used here is called the “factor-label method” or “dimensional analysis”, and it’s a life-saver.  
Without a doubt, it is the most powerful method known for checking that your equations make sense.   

So let’s formalize it a little bit. 

The factor-label method, also known as dimensional analysis, just means keeping units in the equations 
and treating them like variables. 

That part about “treating them like variables” is important.  Just like a variable is a name that stands in for a 
value you don’t happen to know yet, a unit is a name that stands in for a thing you don’t really know yet.   

(Do you know exactly how long a foot is?  Not likely!  You have some general idea, and you know that 
1 foot = 12 inches by definition, but you don’t know exactly what an inch is, either.  It’s OK to not know 
exactly what these things are, as long as you keep the names straight when you’re working with them.) 
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As with variables, there are only a few things that you can do with units, and some things that you definitely 
can not do: 

ݏݎݑ݋݄ 5 ൅ ݏݎݑ݋݄ 6 ൌ   It’s OK to add and subtract the same units — just add and  ݏݎݑ݋݄ 11
 subtract the coefficients, and keep the unit the same. 

            When the same unit appears on both top and bottom of a 
            fraction, that unit cancels. 

 ݐ݂݁݁ 5 ∙ ݐ݂݁݁ 6 ൌ  .ଶ It’s OK to multiply the same units, but you get a new unitݐ݂݁݁ 30
 (The area of an rectangle 5 feet by 6 feet is 30 feet2, more 
 commonly written as “30 square feet”.) 

 ݖ݋ 12 ∙ 5 ݅݊ ൌ  It’s also OK to multiply different units, but both units get carried    ݊݅ ݖ݋ 60
 through into the product.  (Shown here is a torque calculation.) 

ݏݎݑ݋݄ 5 ൅  It is not OK to add and subtract different kinds of units.  If you (!nonsense)    ݐ݂݁݁ 12
 find something like this in the middle of a calculation, you know 
 there’s a mistake that needs finding and fixing. 

ݐ݂݁݁ 5 ൅ ݏ݄݁ܿ݊݅ 4 ൌ   It’s OK to add and subtract quantities that can be converted ݏ݄݁ܿ݊݅ 64
 to some common unit. 

ହ ௠௚

௖௖
ൌ

௬  ௖௖

଻ ௠௚
                 (nonsense!) It is not OK to have different kinds of units on opposite sides of an 

equation.  Here we’re looking at weight/volume on the left, but 
volume/weight on the right.  That equation cannot possibly be 
correct. 

More Applications of the Factor-Label Method 

As we’ve seen above, the factor-label method is a very powerful method to help set up correct proportions.  
It can also be used to help set up other problems involving multiplying and dividing of various quantities.  
Unit conversion is a classic example. 

Let’s work a problem involving both a proportion and some unit conversions. 

Pesticide Dilution Problem.  Instructions for mixing a particular pesticide call for diluting 4 tablespoons of 
concentrate in 2 gallons of water.  But I want only 20 ounces in a spray bottle.  How much concentrate do I 
need to go with 20 ounces of water? 

Solution. Problems of this type are always set up as a ratio. 

In this case, one good ratio is 
ସ ௧௔௕௟௘௦௣௢௢௡௦ ௖௢௡௖௘௡௧௥௔௧௘

ଶ ௚௔௟௟௢௡௦ ௪௔௧௘௥
ൌ

?  ௧௔௕௟௘௦௣௢௢௡௦ ௖௢௡௖௘௡௧௥௔௧௘

ଶ଴ ௢௨௡௖௘௦ ௪௔௧௘௥
 

This ratio seems like it’s on the right track because it has 
௧௔௕௟௘௦௣௢௢௡௦ ௖௢௡௖௘௡௧௥௔௧௘

ሺ௦௢௠௘ ௩௢௟௨௠௘ ௢௙ሻ ௪௔௧௘௥
 on both sides.  But there’s a 

problem with the denominators — on the left side I have “2 gallons” and on the right side I have “20 
ounces”.  The numbers are no problem; they’ll just be part of the arithmetic.  But I need to convert gallons 
and ounces to some common unit.  Let’s go for ounces, since that’s where we’d like to end up. 
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If you Google on “unit conversion”, you’ll find a bunch of online converters, for example at 
http://www.onlineconversion.com/ .  Those converters will give you the required conversion factor in a 
single step.  For example, http://www.onlineconversion.com will tell you that  
“1 gallon [US, liquid] = 128 ounce [US, liquid]”. 

Well, if 1 gallon = 128 ounces, then  
ଵ ௚௔௟௟௢௡

ଵଶ଼ ௢௨௡௖௘௦
ൌ 1  and also  

ଵଶ଼ ௢௨௡௖௘௦

ଵ ௚௔௟௟௢௡
ൌ 1 . 

We can of course multiply either side of any equation by 1 without changing the solutions.  In this case, it’s 
very helpful to multiply as follows  

݊݋݈݈ܽ݃ 1

ݏ݁ܿ݊ݑ݋ 128
∙
݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ 4

ݎ݁ݐܽݓ ݏ݊݋݈݈ܽ݃ 2
ൌ
? ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ  

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 20
 

Cancelling the units as if they were variables leaves us with 

 

݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ 4

128  ∙ ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 2
ൌ
? ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ  

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 20
 

Solving the proportion now leaves us with 

 ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 20 ∙
݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ 4

128  ∙ ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 2
ൌ  ?  ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ  

 

80

256
݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ ൌ   

5

16
 ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ  

This is still a little awkward for the real application, since tablespoon measures don’t come marked with 
fractions.  Converting again to some smaller unit will help.  It turns out that “teaspoon” is a handy smaller 

unit: 3 ݏ݊݋݋݌ݏܽ݁ݐ ൌ  or , ݊݋݋݌ݏ݈ܾ݁ܽݐ 1
ଷ ௧௘௔௦௣௢௢௡௦

ଵ ௧௔௕௟௘௦௣௢௢௡
ൌ 1.  As before, we can multiply our answer by this 

strange form of “1” in order to change the units: 

 
This number (15 16ൗ ) is close enough to the size of a measuring spoon that I can actually use it to mix the 
pesticide.  So there’s our answer: 15 16ൗ  teaspoon of pesticide concentrate in 20 ounces of water. 
 
In more complicated problems, you won’t be able to find the required conversion factor in a single step, but 
you can always use a sequence of steps to get the same effect.  For example, converting 30 miles per hour 
into feet per second:   
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At this point, you may very well be saying “Is this man crazy?!  There are much easier ways to do unit 
conversions!”   
 
If so, you’re correct, sort of.  For example, we could do the pesticide problem by just substituting 
equivalents, like this: 
 

݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏ݈ܾ݁ܽݐ 4

ݎ݁ݐܽݓ ݏ݊݋݈݈ܽ݃ 2
ൌ
4  ∙ ሺ3 ݏ݊݋݋݌ݏܽ݁ݐሻ ܿ݁ݐܽݎݐ݊݁ܿ݊݋

2 ∙ ሺ128 ݏ݁ܿ݊ݑ݋ሻݎ݁ݐܽݓ
ൌ
݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏܽ݁ݐ 12

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 256
 

 
Now we can set up and solve the proportion. 
 

݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏܽ݁ݐ 12

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 256
ൌ
? ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏܽ݁ݐ

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 20
 

 

 ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 20 ∙  
݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏܽ݁ݐ 12

ݎ݁ݐܽݓ ݏ݁ܿ݊ݑ݋ 256
ൌ
240

256
 ݁ݐܽݎݐ݊݁ܿ݊݋ܿ ݏ݊݋݋݌ݏܽ݁ݐ

 

Finally, reducing the fraction 
ଶସ଴

ଶହ଺
 to lowest terms gives us the same answer we had before, 15 16ൗ  teaspoon of 

pesticide concentrate in 20 ounces of water. 
 
Is this simpler? 
 
Well, the arithmetic ends up being exactly the same.  (Of course it would have to be!)   
 
Substituting equivalents does require less writing, perhaps quite a lot less if you’re willing to erase and 
overwrite: 

 
 

In exchange, the factor-label method — “multiplying by strange forms of 1”— provides a framework that is 
able to handle a wide variety of other problems far beyond simple unit conversion.   
 
To apply the factor-label method, we first build a table of quantities that correspond to each other.  
Eventually, we rewrite each row of the table as a fraction that is a “strange form of 1”, and multiply them 
together.  This whole process is driven by looking at the units.  What do we have when we start?  What do 
we need when we end?   From the starting units, we pick correspondences that cancel units (factor labels) we 
don’t want, while retaining or producing units we do want.   
 
Consider, for example, this homework problem: 
 

100 Percent of Daily Allowance of Iron (http://mathforum.org/library/drmath/view/58011.html) 
A common foodstuff is found to contain .00125% iron. The serving size is 87.0 grams. If the 
recommended daily allowance is 18mg of iron, how many servings would a person have to 
eat to get 100% of the daily allowance of iron? 
 

What we are essentially asked to do is a complicated unit conversion that turns “100% daily allowance of 
iron” into “number of servings”.   
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So, we want to set up a sequence of multiplications by “strange forms of 1” that looks like this: 
 

݊݋ݎ݅ ݂݋ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀ 100%

1
 ൈ strange 1 ൈ strange 1 ൈ strange 1 ൈ … ൌ  

? ? ݏ݃݊݅ݒݎ݁ݏ

1
 

 
First, we read the problem and build a table of things that correspond to each other: 
 

Quantity #1 Quantity #2 Why? 
.00125 gm iron 100 gm foodstuff Given, and definition of percent as parts per 100. 

I’m using “gm” because that’s the unit used 
elsewhere in the problem, and I’m assuming that 
the given percentage is “by weight”. 

1 serving 87.0 gm foodstuff Given 
daily allowance iron 18 mg iron Given 

 
OK, right off we’re in trouble because there’s nothing in the table that corresponds to that leading “100%”.  
No problem, we can handle that by just converting it decimal form as usual.  That gets us to this: 
 

݊݋ݎ݅ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀ 1.00

1
 ൈ strange 1 ൈ strange 1 ൈ strange 1 ൈ … ൌ  

? ? ݏ݃݊݅ݒݎ݁ݏ

1
 

 
Now we have “daily allowance iron” on top, so we need something to cancel that out.  Looking through the 
table, there’s only one correspondence that applies.  So we write that one as a fraction and stick it in as a 
“strange 1”: 
 

݊݋ݎ݅ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀ 1.00

1
ൈ 

݊݋ݎ݅ ݃݉ 18

݊݋ݎ݅ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀
ൈ strange 1 ൈ strange 1 ൈ … ൌ   

? ? ݏ݃݊݅ݒݎ݁ݏ

1
 

 
The unmatched unit is now “mg of iron”.  Looking through the table, we don’t have anything involving that 
exact quantity, but we do have “gm of iron”.  From general knowledge, we know how to convert mg to gm, 
and then we can use the correspondence we know between gm of iron and gm of foodstuff: 
 

݊݋ݎ݅ ݂݋ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀ 1.00

1
ൈ 

݊݋ݎ݅ ݂݋ ݃݉ 18

݊݋ݎ݅ ݂݋ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀
ൈ
0.001 ݃݉

1 ݉݃
ൈ
݂݂ݑݐݏ݀݋݋݂ ݉݃ 100

. ݊݋ݎ݅ ݉݃ 00125
ൈ … ൌ  

? ? ݏ݃݊݅ݒݎ݁ݏ

1
 

 
The unmatched unit is now “gm foodstuff”, and we have a correspondence to handle that. 
 

݊݋ݎ݅ ݂݋ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀ 1.00

1
ൈ 

݊݋ݎ݅ ݂݋ ݃݉ 18

݊݋ݎ݅ ݂݋ ݁ܿ݊ܽݓ݋݈݈ܽ ݕ݈݅ܽ݀
ൈ
0.001 ݃݉

1 ݉݃
ൈ
݂݂ݑݐݏ݀݋݋݂ ݉݃ 100

. ݊݋ݎ݅ ݉݃ 00125
ൈ

݃݊݅ݒݎ݁ݏ 1

݂݂ݑݐݏ݀݋݋݂ ݉݃ 87.0
ൌ   

? ? ݏ݃݊݅ݒݎ݁ݏ

1
 

 
I think we’re done now.  Let’s see... 
 

 
 
Doing the arithmetic gives us our answer: 16.6 servings 
 

1.00 

1
ൈ 
18 

1
ൈ
0.001

1
ൈ

100

. 00125
ൈ
݃݊݅ݒݎ݁ݏ 1

87.0
ൌ   

ݏ݃݊݅ݒݎ݁ݏ 16.6

1
 

 
Without the labels, that computation looks like black magic.  With the labels, it’s pretty straightforward. 
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We can check the answer by working backwards.  16.6 servings would be 16.6*87 = 1444 gm of foodstuff.  
At 0.00125% iron, 1444 gm foodstuff * 0.00125/100 gives 0.018 gm iron = 18 mg of iron, and that’s quoted 
as being the daily allowance.  Great, that checks! 
 
Let’s try another one: 
 

Administering Insulin http://mathforum.org/library/drmath/view/63328.html 
If a doctor prescribes 30 units of insulin in 500 ml to be administered over 2 hours, how 
many drops per minute should be administered if the set is calibrated to deliver 20 drops per 
ml?  

 
Our answer is supposed to be “drops per minute”.  What have we got to work with?   
 
First, we need to think about the physical situation.  The doctor has asked for a bag of insulin 
solution to be infused into a patient.  The bag contains 30 units of actual insulin, dissolved in 500 
ml.  The entire 500 ml is supposed to be delivered, over a period of 2 hours.  Thus, what we’re 
really given is one rate, 500 ml per 2 hours, and asked to turn it into so many drops per minute.   
 
The fact that the bag contains 30 units of insulin is unnecessary information.  You need to get used 
to having more information than you need — in real-life problems that will almost always be the 
case.  Only in story problems has the author already whittled down the problem to its essentials, or 
close to them. 
  
OK, now we know where we need to start and where we need to end up: 
 

500 ݈݉

ݏݎݑ݋݄ 2
 ൈ strange 1 ൈ strange 1 ൈ …  ൌ   

? ? ݏ݌݋ݎ݀

݁ݐݑ݊݅݉
 

 
Let’s see what else we have to work with.  Let’s work the problem in our heads, while building a 
table of correspondences. 
 

Quantity #1 Quantity #2 Why? 
1 ml 20 drops given as calibration for the set, use this to cancel the “ml” 
1 hour 60 minutes standard unit conversion, use this to cancel the “hours” 

 
Well, gee, that was quick! 
 

500 ݈݉

ݏݎݑ݋݄ 2
 ൈ

ݏ݌݋ݎ݀ 20

1 ݈݉
ൈ

ݎݑ݋݄ 1

ݏ݁ݐݑ݊݅݉ 60
 ൌ   

ݏ݌݋ݎ݀ 83.3

݁ݐݑ݊݅݉
 

 
Of course, there’s a patient at stake on this one.  We’ll definitely want to check that the answer 
makes sense!  83.3 drops/minute means 83.3/20 ml per minute, just a hair over 4 ml/minute.  2 
hours is 2*60 = 120 minutes.  120 minutes * 4 ml/minute would be 480 ml, and we’re a hair over 
that.  OK, sounds good. 
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It’s important to notice that each “strange 1” is really capturing the concept of “corresponds to”, 
which may be quite a different relationship from “is equal to”.   
 

When we write 
଼ ௦௟௜௖௘௦ ௣௜௭௭௔

ଷ ௣௘௢௣௟௘
  and act as if   

଼ ௦௟௜௖௘௦ ௣௜௭௭௔

ଷ ௣௘௢௣௟௘
ൌ 1, we do not mean that you can substitute 

8 slices of pizza for 3 people in any situation whatsoever.   
 
Instead, the notation just means that for the purposes of this problem, if you multiply by that 
fraction you’ll get another true statement.   
 
There are some important assumptions hidden behind that statement.  
 
Basically, it assumes that the fraction is a ratio, so the numbers can be scaled.  That’s not always 

true.  For example 25°C = 77°F, but it’s not valid to use 
ଶହԨ

଻଻Ԭ
ൌ 1  in the factor-label method because 

if you scale the numbers, you get false statements. 50°C = 122°F, not 154°F as simple scaling 
would predict. 
 
In real-life problems, some of the correspondences will come from simple unit conversions.  In 
those, the relationship really is “equals to”.  12 inches = 1 foot because each side describes the very 
same length. 
 
Other correspondences will come from relationships that are only valid in the context of the 
problem.  We already spoke of pizzas and people, mg per daily allowance, and gm per serving.  
Other common examples are gallons per tank, watts per lightbulb, dollars per kilowatt-hour, and so 
on. 
 
By the way, one last piece of notation...  If you see a unit like “dollars per person per week”, the 
appropriate fractional unit looks like this: 

ݏݎ݈݈ܽ݋݀

݇݁݁ݓ ݊݋ݏݎ݁݌
 

 
If you’re good at PEMDAS, you can remember this from the standard order of operations:  
dollars / person / week = (dollars / person) / week. 
 
If you’re not good at PEMDAS, you can figure it out by asking “What makes sense when I try to 
use this?”   
 
5 persons at 6 dollars per person per week would be 30 dollars per week, and 7 weeks at 6 dollars 
per person per week would be 42 dollars per person.   
 
Both “person” and “week” have to be in the denominator for things to work out. 
 
 


